
Mongoose adalah perpustakaan Objektif Pemodelan Data (ODM) untuk MongoDB dan Node.js. Ini mengurus hubungan antara data, memberikan pengesahan skema, dan digunakan untuk menerjemahkan antara objek dalam kod dan representasi objek-objek tersebut di MongoDB.

MongoDB adalah pangkalan data dokumen NoSQL tanpa skema. Ini bermaksud anda boleh menyimpan dokumen JSON di dalamnya, dan struktur dokumen-dokumen ini dapat berbeza-beza kerana tidak dikuatkuasakan seperti pangkalan data SQL. Ini adalah salah satu kelebihan menggunakan NoSQL kerana mempercepat pengembangan aplikasi dan mengurangkan kerumitan penggunaan.
Berikut adalah contoh bagaimana data disimpan di Pangkalan Data Mongo vs SQL:


Terminologi
Koleksi
'Koleksi' di Mongo setara dengan jadual dalam pangkalan data hubungan. Mereka boleh menyimpan banyak dokumen JSON.
Dokumen
'Dokumen' setara dengan rekod atau baris data dalam SQL. Walaupun baris SQL dapat merujuk data dalam jadual lain, dokumen Mongo biasanya menggabungkannya dalam dokumen.
Padang
'Fields' atau atribut serupa dengan lajur dalam jadual SQL.
Skema
Walaupun Mongo tidak mempunyai skema, SQL menentukan skema melalui definisi jadual. 'Skema' Mongoose adalah struktur data dokumen (atau bentuk dokumen) yang ditegakkan melalui lapisan aplikasi.
Model
'Model' adalah pembina pesanan tinggi yang mengambil skema dan membuat contoh dokumen yang setara dengan rekod dalam pangkalan data hubungan.
Bermula
Pemasangan Mongo
Sebelum kita memulakan, mari siapkan Mongo. Anda boleh memilih salah satu daripada pilihan berikut (kami menggunakan pilihan # 1 untuk artikel ini):
- Muat turun versi MongoDB yang sesuai untuk Sistem Operasi anda dari Laman Web MongoDB dan ikuti arahan pemasangannya
- Buat langganan pangkalan data kotak pasir percuma di mLab
- Pasang Mongo menggunakan Docker jika anda lebih suka menggunakan docker
Mari menavigasi beberapa asas Mongoose dengan menerapkan model yang mewakili data untuk buku alamat yang dipermudahkan.
Saya menggunakan Kod Visual Studio, Nod 8.9, dan NPM 5.6. Nyalakan IDE kegemaran anda, buat projek kosong, dan mari kita mulakan! Kami akan menggunakan sintaks ES6 terhad di Node, jadi kami tidak akan mengkonfigurasi Babel.
Pasang NPM
Mari pergi ke folder projek dan mulakan projek kami
npm init -y
Mari pasang Mongoose dan pustaka pengesahan dengan arahan berikut:
npm install mongoose validator
Perintah pemasangan di atas akan memasang versi terbaru perpustakaan. Sintaks Mongoose dalam artikel ini khusus untuk Mongoose v5 dan seterusnya.
Sambungan Pangkalan Data
Buat fail ./src/database.js
di bawah akar projek.
Seterusnya, kami akan menambah kelas sederhana dengan kaedah yang menghubungkan ke pangkalan data.
Rentetan sambungan anda akan berbeza-beza berdasarkan pemasangan anda.
let mongoose = require('mongoose'); const server = '127.0.0.1:27017'; // REPLACE WITH YOUR DB SERVER const database = 'fcc-Mail'; // REPLACE WITH YOUR DB NAME class Database { constructor() { this._connect() } _connect() { mongoose.connect(`mongodb://${server}/${database}`) .then(() => { console.log('Database connection successful') }) .catch(err => { console.error('Database connection error') }) } } module.exports = new Database()
The require(‘mongoose’)
panggilan di atas mengembalikan objek Singleton. Ini bermaksud bahawa pada kali pertama anda menelefon require(‘mongoose’)
, ia membuat contoh kelas Mongoose dan mengembalikannya. Pada panggilan berikutnya, ia akan mengembalikan contoh yang sama yang dibuat dan dikembalikan kepada anda pada kali pertama kerana bagaimana modul import / eksport berfungsi di ES6.

Begitu juga, kami telah mengubah kelas Pangkalan Data kami menjadi tunggal dengan mengembalikan contoh kelas dalam module.exports
penyataan kerana kami hanya memerlukan satu sambungan ke pangkalan data.
ES6 menjadikan kami sangat mudah untuk membuat corak tunggal (single instance) kerana bagaimana modul loader berfungsi dengan menyimpan respons fail yang diimport sebelumnya.
Skema Mongoose vs Model
Model Mongoose adalah pembungkus pada skema Mongoose. Skema Mongoose menentukan struktur dokumen, nilai lalai, validator, dll., Sedangkan model Mongoose menyediakan antara muka ke pangkalan data untuk membuat, membuat pertanyaan, mengemas kini, menghapus rekod, dll.
Membuat model Mongoose terdiri daripada tiga bahagian:
1. Merujuk Mongoose
let mongoose = require('mongoose')
This reference will be the same as the one that was returned when we connected to the database, which means the schema and model definitions will not need to explicitly connect to the database.
2. Defining the Schema
A schema defines document properties through an object where the key name corresponds to the property name in the collection.
let emailSchema = new mongoose.Schema({ email: String })
Here we define a property called email with a schema type String which maps to an internal validator that will be triggered when the model is saved to the database. It will fail if the data type of the value is not a string type.
The following Schema Types are permitted:
- Array
- Boolean
- Buffer
- Date
- Mixed (A generic / flexible data type)
- Number
- ObjectId
- String
Mixed and ObjectId are defined under require(‘mongoose’).Schema.Types
.
3. Exporting a Model
We need to call the model constructor on the Mongoose instance and pass it the name of the collection and a reference to the schema definition.
module.exports = mongoose.model('Email', emailSchema)
Let’s combine the above code into ./src/models/email.js
to define the contents of a basic email model:
let mongoose = require('mongoose') let emailSchema = new mongoose.Schema({ email: String }) module.exports = mongoose.model('Email', emailSchema)
A schema definition should be simple, but its complexity is usually based on application requirements. Schemas can be reused and they can contain several child-schemas too. In the example above, the value of the email property is a simple value type. However, it can also be an object type with additional properties on it.
We can create an instance of the model we defined above and populate it using the following syntax:
let EmailModel = require('./email') let msg = new EmailModel({ email: '[email protected]' })
Let’s enhance the Email schema to make the email property a unique, required field and convert the value to lowercase before saving it. We can also add a validation function that will ensure that the value is a valid email address. We will reference and use the validator library installed earlier.
let mongoose = require('mongoose') let validator = require('validator') let emailSchema = new mongoose.Schema({ email: { type: String, required: true, unique: true, lowercase: true, validate: (value) => { return validator.isEmail(value) } } }) module.exports = mongoose.model('Email', emailSchema)
Basic Operations
Mongoose has a flexible API and provides many ways to accomplish a task. We will not focus on the variations because that is out of scope for this article, but remember that most of the operations can be done in more than one way either syntactically or via the application architecture.
Create Record
Let’s create an instance of the email model and save it to the database:
let EmailModel = require('./email') let msg = new EmailModel({ email: '[email protected]' }) msg.save() .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })
The result is a document that is returned upon a successful save:
{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }
The following fields are returned (internal fields are prefixed with an underscore):
- The
_id
field is auto-generated by Mongo and is a primary key of the collection. Its value is a unique identifier for the document. - The value of the
email
field is returned. Notice that it is lower-cased because we specified thelowercase:true
attribute in the schema. __v
is the versionKey property set on each document when first created by Mongoose. Its value contains the internal revision of the document.
If you try to repeat the save operation above, you will get an error because we have specified that the email field should be unique.
Fetch Record
Let’s try to retrieve the record we saved to the database earlier. The model class exposes several static and instance methods to perform operations on the database. We will now try to find the record that we created previously using the find method and pass the email as the search term.
EmailModel .find({ email: '[email protected]' // search query }) .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })
The document returned will be similar to what was displayed when we created the record:
{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }
Update Record
Let’s modify the record above by changing the email address and adding another field to it, all in a single operation. For performance reasons, Mongoose won’t return the updated document so we need to pass an additional parameter to ask for it:
EmailModel .findOneAndUpdate( { email: '[email protected]' // search query }, { email: '[email protected]' // field:values to update }, { new: true, // return updated doc runValidators: true // validate before update }) .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })
The document returned will contain the updated email:
{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }
Delete Record
We will use the findOneAndRemove
call to delete a record. It returns the original document that was removed:
EmailModel .findOneAndRemove({ email: '[email protected]' }) .then(response => { console.log(response) }) .catch(err => { console.error(err) })
Helpers
We have looked at some of the basic functionality above known as CRUD (Create, Read, Update, Delete) operations, but Mongoose also provides the ability to configure several types of helper methods and properties. These can be used to further simplify working with data.
Let’s create a user schema in ./src/models/user.js
with the fieldsfirstName
and lastName
:
let mongoose = require('mongoose') let userSchema = new mongoose.Schema({ firstName: String, lastName: String }) module.exports = mongoose.model('User', userSchema)
Virtual Property
A virtual property is not persisted to the database. We can add it to our schema as a helper to get and set values.
Let’s create a virtual property called fullName
which can be used to set values on firstName
and lastName
and retrieve them as a combined value when read:
userSchema.virtual('fullName').get(function() { return this.firstName + ' ' + this.lastName }) userSchema.virtual('fullName').set(function(name) { let str = name.split(' ') this.firstName = str[0] this.lastName = str[1] })
Callbacks for get and set must use the function keyword as we need to access the model via the this
keyword. Using fat arrow functions will change what this
refers to.
Now, we can set firstName
and lastName
by assigning a value to fullName
:
let model = new UserModel() model.fullName = 'Thomas Anderson' console.log(model.toJSON()) // Output model fields as JSON console.log() console.log(model.fullName) // Output the full name
The code above will output the following:
{ _id: 5a7a4248550ebb9fafd898cf, firstName: 'Thomas', lastName: 'Anderson' } Thomas Anderson
Instance Methods
We can create custom helper methods on the schema and access them via the model instance. These methods will have access to the model object and they can be used quite creatively. For instance, we could create a method to find all the people who have the same first name as the current instance.
In this example, let’s create a function to return the initials for the current user. Let’s add a custom helper method called getInitials
to the schema:
userSchema.methods.getInitials = function() { return this.firstName[0] + this.lastName[0] }
This method will be accessible via a model instance:
let model = new UserModel({ firstName: 'Thomas', lastName: 'Anderson' }) let initials = model.getInitials() console.log(initials) // This will output: TA
Static Methods
Similar to instance methods, we can create static methods on the schema. Let’s create a method to retrieve all users in the database:
userSchema.statics.getUsers = function() { return new Promise((resolve, reject) => { this.find((err, docs) => { if(err) { console.error(err) return reject(err) } resolve(docs) }) }) }
Calling getUsers
on the Model class will return all the users in the database:
UserModel.getUsers() .then(docs => { console.log(docs) }) .catch(err => { console.error(err) })
Adding instance and static methods is a nice approach to implement an interface to database interactions on collections and records.
Middleware
Middleware are functions that run at specific stages of a pipeline. Mongoose supports middleware for the following operations:
- Aggregate
- Document
- Model
- Query
For instance, models have pre
and post
functions that take two parameters:
- Type of event (‘init’, ‘validate’, ‘save’, ‘remove’)
- A callback that is executed with this referencing the model instance

Let’s try an example by adding two fields called createdAt
and updatedAt
to our schema:
let mongoose = require('mongoose') let userSchema = new mongoose.Schema({ firstName: String, lastName: String, createdAt: Date, updatedAt: Date }) module.exports = mongoose.model('User', userSchema)
When model.save()
is called, there is a pre(‘save’, …)
and post(‘save’, …)
event that is triggered. For the second parameter, you can pass a function that is called when the event is triggered. These functions take a parameter to the next function in the middleware chain.
Let’s add a pre-save hook and set values for createdAt
and updatedAt
:
userSchema.pre('save', function (next) { let now = Date.now() this.updatedAt = now // Set a value for createdAt only if it is null if (!this.createdAt) { this.createdAt = now } // Call the next function in the pre-save chain next() })
Let’s create and save our model:
let UserModel = require('./user') let model = new UserModel({ fullName: 'Thomas Anderson' } msg.save() .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })
You should see values for createdAt
and updatedAt
when the record that is created is printed:
{ _id: 5a7bbbeebc3b49cb919da675, firstName: 'Thomas', lastName: 'Anderson', updatedAt: 2018-02-08T02:54:38.888Z, createdAt: 2018-02-08T02:54:38.888Z, __v: 0 }
Plugins
Suppose that we want to track when a record was created and last updated on every collection in our database. Instead of repeating the above process, we can create a plugin and apply it to every schema.
Let’s create a file ./src/model/plugins/timestamp.js
and replicate the above functionality as a reusable module:
module.exports = function timestamp(schema) { // Add the two fields to the schema schema.add({ createdAt: Date, updatedAt: Date }) // Create a pre-save hook schema.pre('save', function (next) { let now = Date.now() this.updatedAt = now // Set a value for createdAt only if it is null if (!this.createdAt) { this.createdAt = now } // Call the next function in the pre-save chain next() }) }
To use this plugin, we simply pass it to the schemas that should be given this functionality:
let timestampPlugin = require('./plugins/timestamp') emailSchema.plugin(timestampPlugin) userSchema.plugin(timestampPlugin)
Query Building
Mongoose has a very rich API that handles many complex operations supported by MongoDB. Consider a query where we can incrementally build query components.
In this example, we are going to:
- Find all users
- Skip the first 100 records
- Limit the results to 10 records
- Sort the results by the firstName field
- Select the firstName
- Execute that query
UserModel.find() // find all users .skip(100) // skip the first 100 items .limit(10) // limit to 10 items .sort({firstName: 1} // sort ascending by firstName .select({firstName: true} // select firstName only .exec() // execute the query .then(docs => { console.log(docs) }) .catch(err => { console.error(err) })
Closing
We have barely scratched the surface exploring some of the capabilities of Mongoose. It is a rich library full of useful and and powerful features that make it a joy to work with data models in the application layer.
While you can interact with Mongo directly using Mongo Driver, Mongoose will simplify that interaction by allowing you to model relationships between data and validate them easily.
Fun Fact:Mongoose is created by Valeri Karpovwho is an incredibly talented engineer! He coined the term The MEAN Stack.
If this article was helpful, ??? and Follow me on Twitter.
